A 96-channel FPGA-based Time-to-Digital Converter (TDC) and fast trigger processor module with multi-hit capability and pipeline
نویسندگان
چکیده
We describe an field-programmable gate arrays based (FPGA), 96-channel, Time-to-Digital converter (TDC) and trigger logic board intended for use with the Central Outer Tracker (COT) [T. Affolder et al., Nucl. Instr. and Meth. A 526 (2004) 249] in the CDF Experiment [The CDF-II detector is described in the CDF Technical Design Report (TDR), FERMILAB-Pub-96/390-E. The TDC described here is intended as a further upgrade beyond that described in the TDR] at the Fermilab Tevatron. The COT system is digitized and read out by 315 TDC cards, each serving 96 wires of the chamber. The TDC is physically configured as a 9U VME card. The functionality is almost entirely programmed in firmware in two Altera Stratix FPGAs. The special capabilities of this device are the availability of 840MHz LVDS inputs, multiple phase-locked clock modules, and abundant memory. The TDC system operates with an input resolution of 1.2 ns, a minimum input pulse width of 4.8 ns and a minimum separation of 4.8 ns between pulses. Each input can accept up to 7 hits per collision. The time-to-digital conversion is done by first sampling each of the 96 inputs in 1.2-ns bins and filling a circular memory; the memory addresses of logical transitions (edges) in the input data are then translated into the time of arrival and width of the COT pulses. Memory pipelines with a depth of 5:5ms allow deadtime-less operation in the first-level trigger; the data are multiple-buffered to diminish deadtime in the second-level trigger. The complete process of edge-detection and filling of buffers for readout takes 12ms. The TDC VME interface allows a 64-bit Chain Block Transfer of multiple boards in a crate with transfer-rates up to 47Mbytes/s. The TDC module also produces prompt trigger data every Tevatron crossing via a deadtimeless fast logic path that can be easily reprogrammed. The trigger bits are clocked onto the P3 VME backplane connector with a 22-ns clock for transmission to the trigger. The full TDC design and multi-card test results are described. There is no measurable cross-talk between e front matter r 2005 Elsevier B.V. All rights reserved. ma.2005.08.071 ing author. Tel.: +1773 7027479; fax: +1 773 8345959. ess: [email protected] (A. Paramonov).
منابع مشابه
A 32-Channel High Resolution Time-to-Digital Converter (TDC) in a Lattice ECP2M Field-Programmable-Gate-Array (FPGA)
The development of the TDC on Xilinx Virtex-4 FPGA [1] has been continued. The dead-time could be decreased to 15 ns by pipelining. In order to test the design in experiments it was moved to the VULOM-4 boards and adapted to triggered systems. Since the differential timing signals were converted to single ended signals on the VULOM-4 board before being fed into the FPGA, a slight decrease in re...
متن کاملUnified Pulsed Laser Range Finder and Velocimeter using Ultra-Fast Time-To-Digital Converter
In this paper, we present a high accuracy laser range finder and velocimeter using ultra-fast time-to-digital converter (TDC). The system operation is based on the measuring the round-trip time of a narrow laser pulse. A low-dark current high-speed PIN photodiode is used to detect the triggered laser beam and to produce start signal. The pulsed laser diode generates 45W optical power at 30ns du...
متن کاملDesign and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملTime-Mode Signal Quantization for Use in Sigma-Delta Modulators
The rapid scaling in modern CMOS technology has motivated the researchers to design new analog-to-digital converter (ADC) architectures that can properly work in lower supply voltage. An exchanging the data quantization procedure from the amplitude to the time domain, can be a promising alternative well adapt with the technology scaling. This paper is going to review the recent development in t...
متن کاملDesign and Simulation of a Modified 32-bit ROM-based Direct Digital Frequency Synthesizer on FPGA
This paper presents a modified 32-bit ROM-based Direct Digital Frequency Synthesizer (DDFS). Maximum output frequency of the DDFS is limited by the structure of the accumulator used in the DDFS architecture. The hierarchical pipeline accumulator (HPA) presented in this paper has less propagation delay time rather than the conventional structures. Therefore, it results in both higher maximum ope...
متن کامل